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We derive a local approximation for the correlation energy in two-dimensional electronic systems. In the
derivation we follow the scheme originally developed by Colle and Salvetti for three dimensions and consider
a Gaussian approximation for the pair density. Then, we introduce an ad hoc modification which better
accounts for both the long-range correlation and the kinetic-energy contribution to the correlation energy. The
resulting functional is local and depends parametrically on the number of electrons in the system. We apply this
functional to the homogeneous electron gas and to a set of two-dimensional quantum dots covering a wide
range of electron densities and thus various amounts of correlation. In all test cases we find an excellent
agreement between our results and the exact correlation energies. Our correlation functional has a form that is
simple and straightforward to implement but broadly outperforms the commonly used local-density
approximation.
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I. INTRODUCTION

In the last couple of decades, the growing world of nano-
technology put at our disposal several classes of low-
dimensional materials. Particularly interesting examples are
two-dimensional �2D� quantum dots �QDs� �Refs. 1 and 2�
formed at the interface between two semiconductors. These
systems are not only important from a technological point of
view but are also remarkable from a purely theoretical per-
spective. In fact, as they can be built with different shapes
and sizes and with a varying number of electrons, they are
the ideal system to study electronic correlation.

The problem of electronic correlation is perhaps the most
challenging in the field of condensed-matter physics. Numer-
ous approaches to handle this problem, with varying degrees
of sophistication and complexity, have been put forward
since the very birth of quantum mechanics. Few-electron
QDs can be studied accurately by, e.g., configuration inter-
action �CI� �Ref. 3� or by quantum Monte Carlo �QMC�
techniques.4–6 To describe the electronic properties of larger
dots one has to resort to alternative approaches such as
Hartree-Fock �HF� methods �Ref. 7� or density-functional
theory �DFT� �Refs. 2, 8, and 9�.

In DFT, the complexity of the many-body problem is em-
bodied in the so-called exchange and correlation functional.
Several approximations exist for this quantity, allowing for
very accurate calculations of electronic properties in atoms,
molecules, and solids. Clearly, most exchange-correlation
functionals are derived for three-dimensional electronic sys-
tems. However, these approximations are known to break
down when applied in the 2D limit.10 This calls for new
formulas specialized for the 2D case. Particularly challeng-
ing in these applications is the fact that compared with
atomic systems, correlation effects in 2D typically have a
more prominent role due to the large size of the systems
�from 10−8 to 10−6 m�, and to their low electronic densities.

Within DFT, 2D systems such as QDs are commonly
studied using the 2D version of the local-density approxima-
tion �LDA�. It is a combination of the exchange functional
derived for the uniform 2D electron gas by Rajagopal and
Kimball11 and the corresponding correlation functional fitted
to accurate QMC calculations. The first of these LDA corre-
lation functionals was put forward by Tanatar and Ceperley12

in 1989. Later on, it was generalized for the complete range
of collinear spin polarizations by Attaccalite et al.13 Applica-
tions of the 2D-LDA to QDs have been generally successful,
even up to high magnetic fields.2,9 The LDA, however, suf-
fers from several shortcomings, already well known from the
three-dimensional world, especially for strongly inhomoge-
neous systems or in the low-density �strong correlation� re-
gime.

Several alternative paths exist to go beyond the simple
LDA. A particularly successful approach starts with the
seminal work of Colle and Salvetti �CS� �Refs. 15 and 16�
who, starting with a physically motivated ansatz for the
many-body wave function, developed a closed formula for
the correlation energy. This formula has received a large in-
terest especially because it was used to derive the popular
Lee-Yang-Parr �LYP� �Ref. 17� generalized gradient func-
tional. Together with the exchange functional of Becke18 it
forms the BLYP functional, and in hybrid schemes it is a part
of B3LYP,19 X3LYP,20 etc.

Interestingly, the same CS formula can also be interpreted
as an orbital-dependent correlation functional especially
suited for DFT calculations beyond the exact exchange.21 It
should, however, be emphasized that the CS correlation-
energy functional has several known limitations.22–24 In par-
ticular, while short-range correlations are well described,23

important long-range correlations are missing. Even if these
latter effects often cannot be ignored in large molecules and
solids, they can be energetically negligible in small systems
such as atoms. However, it has been shown recently that the
long-range correlation problem may be cured to some
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extent.25,26 Second, in the CS functional the kinetic-energy
contribution to the correlation energy �named below as the
kinetic-energy correlation� is taken into account only in an
empirical fashion through the fitting parameter. In this con-
text, an interesting modification of the original CS approach
have been recently proposed.27

In this work, we generalize the CS scheme15,16 to 2D.
Then we use a Gaussian approximation for the pair probabil-
ity function. Finally, we introduce an ad hoc modification
which, post factum, seems to recover both the long-range and
the kinetic-energy correlation to some good extent.

II. THEORY

Our starting point is the following ansatz15,16 for the
many-body wave function �,

��r1�1, . . . ,rN�N� = �SD�r1�1, . . . ,rN�N��
i�j

�1 − ��ri,r j�� .

�1�

Here, r and � denote, respectively, the space and spin coor-
dinates of the electrons and �SD indicates the single Slater
determinant �SD� of HF theory, which in the DFT context
should be replaced by the Slater determinant generated from
the occupied Kohn-Sham orbitals. The function � describes
the correlated part of the wave function. In the center of
mass, r= �r1+r2� /2, and relative, s=r1−r2, coordinate sys-
tem, it can be written as

��r,s� = �1 − ��r��1 + �s��e−�2�r�s2
, �2�

where the quantities �, �, and � act as correlation factors.
We point out that we introduce ��r� as a local r-dependent
quantity for reasons which become obvious below. To find a
reasonable value for �, which determines the local correla-
tion length, we estimate the area where the electron is corre-
lated as

A�r� =� d2se−�2�r�s2
=

�

�2�r�
. �3�

Then, we assume that this area is proportional to the area of
the Wigner circle �rs

2, where the density parameter rs is
given through the total electron density as rs�r�=1 /��	�r�.
Thus, we find the relation

��r� = q�	�r� , �4�

where q is a fitting parameter.
The SD wave function in Eq. �1� is recovered when all

pairs of electrons are far apart from each other. In contrast,
when two electrons are brought to the same point, the param-
eter � is chosen to satisfy the cusp condition �for the singlet
case� of the wave function. It can be shown28 that, for the 2D
case, �=1. The function controlling the exponential decay is
given by

��r� =
��r�

��r� + ��/2
, �5�

which can be deduced by imposing the condition16,29

� d2s��r,s� = 0. �6�

By using wave function �1� and the definition of the cor-
relation factor � given by Eq. �2�, we can obtain a formula
for the correlation energy,15,16

Ec =� d2r� d2s	2,SD�r,s�
�2�r,s� − 2��r,s�

s
, �7�

where 	2,SD�r ,s� refers to the SD pair density. To simplify
this expression, we write a Gaussian approximation for this
function,

	2,SD�r,s� = 	2,SD�r�e−s2/
2�r�. �8�

The use of this Gaussian approximation was proposed in the
context of the CS scheme by Moscardó and San-Fabían;29

but it has been used in the field of DFT even further back.30

To obtain the function 
�r�, which defines the width of the
Gaussian, we apply the exact sum rule,

	SD�r� =
2

N − 1
� d2s	2,SD�r,s� =

2�

N − 1
	2,SD�r�
2�r� , �9�

from which follows


�r� =��N − 1�	SD�r�
2�	2,SD�r�

. �10�

To simplify this expression, we apply the relation

	2,SD�r� =
1

4
	SD

2 �r� , �11�

as well as Eq. �4� for the SD density 	SD�r� and find

1


2�r�
= c�2�r� , �12�

where

c =
�

2�N − 1�q2 . �13�

Using these results in Eq. �7� and performing the integration
over s, leads to the final result

Ec
local =� d2r	SD�r��c

local�r� , �14�

where we have defined �c�r� as the local correlation energy
per electron having the lengthy expression,

�c�r� =
�

2q2�����r�
2�2 + c

���r� − 1�2 +
��r����r� − 1�

2 + c

+
���2�r�

4��r��2 + c�3/2 +
����r�
�1 + c

���r� − 1� +
��r�
1 + c	 .

�15�

Up to this point, the only inputs for the correlation energy
are the fitting parameter q �we will come back to the choice
of this parameter later on�, the total number of electrons N,
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and the electron density 	�r�. We remind that the parameter c
is defined through q and N in Eq. �13� and ��r� is given in
terms of 	�r� in Eq. �4�. This particular dependency on N
conflicts with the extent requirement of the correlation func-
tional. For example, situations where two systems are very
far apart from each other are expected to be problematic.
However, semiconductor QDs with fixed N, which are main
applications of the present functional, are free from this
problem. We note also that there are no nuclei directly in-
volved in the system: QDs are principally all-electron sys-
tems confined by a electrostatic potential and modeled in the
effective-mass approximation, which accounts for the sur-
rounding semiconductor material.1,2

In conclusion, Eq. �14� is an explicit density functional for
the correlation energy with a single fitting parameter q. This
functional is self-interaction free, in the sense that it is iden-
tically zero for one-electron systems. Note that to recover
this important property within the standard ladder of
exchange-correlation functionals, one has to resort to highly
sophisticated orbital functionals.

III. APPLICATION AND REFINEMENT OF THE
APPROXIMATION

Here we complete and apply the approximation for the
correlation energy in 2D. In particular, along the applica-
tions, we shall present an ad hoc modification which better
accounts for both the long-range and the kinetic-energy cor-
relation.

To choose a value for the fitting parameter q, we use
Taut’s analytic result31 for the singlet state of a two-electron
parabolic QD with confining strength �=1. In terms of en-
ergy components, the correlation energy can be written as
Ec=Etot−Etot

EXX, where EXX refers to the exact-exchange re-
sult. Applying this formula yields Ec
−0.1619 for the N

=2 singlet when �=1. To obtain the same value from Eq.
�14�, we need to set q=2.258. Of course the choice may be
refined if needed. But aiming at providing ideally a predic-
tive approximation, the fitting should not be carried out for
each new system �to obtain every time the correct answer�
but rather carried out once forever. This is a quite general
and a well known way of defining or refining new approxi-
mations for the central quantities of DFT. In the following,
we will show that our fitting procedure, outlined just above,
guarantees a very good performance for a large class of sys-
tems.

Tables I and II show results for parabolically confined and
for square ��
�� quantum dots. The results obtained with
our local formula for the correlation energy �denoted by
Ec

local� are compared to reference results Ec
ref, as well as with

LDA correlation energies Ec
LDA. We computed the EXX and

LDA values using the real-space code OCTOPUS.33 The EXX
result was calculated in the Krieger-Li-Iafrate �KLI�
approach,34 which is an accurate approximation in the static
case.35 For Ec

LDA we applied the parametrization of Attac-
calite et al.13 Note that we used a perturbative approach to
calculate Ec

local from Eq. �14�. The self-consistent EXX den-
sity was the input for our local functional. We also found that
using the LDA density as input did not make a considerable
difference.

The QDs studied here span a wide range of density pa-
rameters rs determined in a parabolic QD as rs=N−1/6�−2/3

and in our square QD as rs=�� /N. This parameter corre-
sponds to the average radius of an electron in a QD with an
average number density n0=1 / ��rs

2�. Thus, the cases shown
in the tables are between 0.44�rs�9.71. In fact, the upper
limit exceeds the threshold of rs�7.5 for Wigner crystalliza-
tion in the impurity-containing 2D electron gas.36 One
should, however, bear in mind that in QDs the concept of
Wigner localization is ambiguous and no general formula

TABLE I. Comparison of the correlation energies �in atomic units� for parabolic quantum dots. The
reference value Ec

ref is obtained by subtracting the exact-exchange energy from accurate data for the total
energy. The last row contains the mean percentage error, �, for the parabolic dots �excluding the one used in
the fitting procedure�.

N � Etot
ref Etot

EXX −Ec
ref −Ec

local −Ec,mod
local −Ec

LDA

2 1 3a 3.1619 0.1619 0.1619b 0.1619b 0.1988

2 1/4 0.9324c 1.0463 0.1137 0.0957 0.1212 0.1391

2 1/16 0.3031c 0.3732 0.0701 0.0477 0.0757 0.0852

2 1/36 0.1607c 0.2094 0.0487 0.0299 0.0527 0.0607

6 0.42168 10.37d 10.8204 0.4504 0.3805 0.4453 0.5305

6 1 /1.892 7.6001e 8.0211 0.4210 0.3205 0.4060 0.4732

6 1/4 6.995c 7.3911 0.3961 0.3047 0.3946 0.4574

12 1 /1.892 25.636e 26.5528 0.9168 0.6837 0.8504 1.0000

� 26.1% 5.9% 18.4%

aAnalytic solution by Taut from Ref. 31.
bFitted result �see text�.
cCI data from Ref. 3.
dVariational QMC data from Ref. 14.
eDiffusion QMC data from Ref. 5.

LOCAL CORRELATION FUNCTIONAL FOR ELECTRONS… PHYSICAL REVIEW B 78, 195322 �2008�

195322-3



exists for the density parameter at the onset of localization. It
can be also seen that in our examples the ratio of the corre-
lation to the total energy varies from less than 1% up to
around 30%.

Results with our local formula are roughly of the same
quality as the LDA, slightly worse for the parabolic dots but
slightly better for the square dots. Furthermore, a calculation
for the homogeneous electron gas �Fig. 1� reveals that this
functional agrees with the LDA �which is exact for this sys-
tem� in the limit of vanishing rs but underestimates the cor-
relation energy otherwise.

The derived functional not only gives already very rea-
sonable results but is also a very good starting point for
further developments. In fact, we found an alternative func-
tional �that we will denote by Ec,mod

local � obtained by modifying
the first term between the parentheses in Eq. �15� by

���r� − 1�2 → ��r� − 1. �16�

To finish the derivation of this functional we need to refit the
parameter q, which now reads qmod=3.9274 �in such a way,
we again obtain the exact value of the correlation energy for
the two-electron quantum dot as described above�.

Sensu stricto, Eq. �16� is an empirical approximation. Our
results suggest, post factum, that the proposed modification
better accounts for the long-range23,26 and kinetic-energy
correlation.27,37 However, a deeper theoretical understanding

of these results would be appropriate. Along these lines, we
plan to undertake additional analysis in a future work.

According to Tables I and II, our corrected functional
agrees very well with the reference results. We find that, in
all the cases studied, our approximation is vastly superior to
the LDA correlation. Note that our results exhibit the correct
scaling with respect to both confinement strength and num-
ber of electrons even if the adjustable parameter q has only
been fitted to the case N=1 and �=2. Also for the homoge-
neous electron gas �Fig. 1�, our modified functional yields
results that are remarkably close to the reference LDA curve,
departing significantly from the exact curve only for very
small rs �weak correlation limit�.

Finally, we wish to make a few remarks on the usage of
the present correlation functional. First, we point out that in
practical purposes within, e.g., the Kohn-Sham scheme of
DFT, the functional should be combined with an adequate
recipe for the exchange energy, such as the exact exchange or
the functionals suggested in Ref. 38. Second, for many
systems—such as, e.g., QDs in magnetic fields—one re-
quires a spin-polarized version of the exchange-correlation
functional. This has already been taken into account in the
LDA functional by Attaccalite et al.,13 but a spin-polarized
extension of the present functional is still missing. Work to
solve these two issues is already under way.

IV. CONCLUSIONS

We developed a correlation energy functional for the two-
dimensional electron gas starting from the Colle and Savetti
ansatz for the many-body wave function and a Gaussian ap-
proximation to the pair density. To better account for the
long-range and kinetic-energy correlation, we have then in-
troduced an additional ad hoc modification. The resulting
functional has a very simple form depending parametrically
on the total number of electrons N and locally on the elec-
tronic density n�r�. It only contains a single parameter, q,
that was adjusted to the exact calculation of a two-electron
quantum dot. Calculations performed for several systems,
with a wide range of density parameters rs, show that our
functional gives results in very good agreement with refer-
ence values. This agreement is maintained even for very di-
lute electron gases where the correlation energy amounts to
30% of the total energy.

TABLE II. Comparison of the correlation energies �in atomic units� for square ��
�� quantum dots. The
reference value Ec

ref is obtained by subtracting the exact-exchange energy from the quantum Monte Carlo
result for the total energy �Ref. 32�.

N Etot
QMC Etot

EXX −Ec
ref −Ec

local −Ec,mod
local −Ec

LDA

2 3.2731 3.4643 0.1908 0.1905 0.1763 0.2226

6 26.9679 27.5928 0.6249 0.6578 0.5763 0.7624

8 46.7940 47.5962 0.8022 0.9168 0.7836 1.0514

12 103.3378 104.5620 1.2242 1.4494 1.2026 1.6419

16 178.5034 179.9804 1.4770 2.0096 1.6282 2.2534

� 19.3% 6.8% 33.6%
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FIG. 1. �Color online� Correlation energy per unit particle for
the uniform 2D electron gas in various approximations.
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